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Background & Motivation

CASIA

The pre-trained large model based on Transformer has been investigated much among Natural Language, Speech and

Computer Vision, even Decision Making
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The pre-trained large model based on Transformer has been investigated much among Natural

Language, Speech and Computer Vision

What is pre-training?
* The training in advance of standard training
Why we need super-large model with pre-training?
* The standard training (data/model size) is not enough
What to learn in pre-training from the large model
* Representation learning: more general, self-supervised
* Task learning: more task specific, supervised
What problems the super-huge model use?
* Computing resource requirements
* Low efficiency across multiple GPUs to update the large model
* Data loading with low efficiency

So How to train a really large model on many GPUs with huge datasets
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Data parallelism (DP):
The simplest method is to copy the model on many workers and pass partial data to each worker. But the

problem emerges when the model overhead the memory of a single GPU.

Model parallelism (MP):
MP aims to solve the case when the model weights cannot fit into a single node.
They use gradient accumulation for the model parallelism and only allocates a fraction of model parameters on one

worker and thus both the memory usage and the computation are reduced.
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Figure: A naive model parallelism setup where the model is vertically split into 4 partitions.
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Pipeline parallelism (PP):

PP combines model parallelism with data parallelism to reduce inefficient time “bubbles”. The main idea is to
split one minibatch into multiple micro batches and enable each stage worker to process one micro batch

simultaneously

PP in DeepSpeed
DeepSpeed uses gradient accumulation to extract pipeline parallelism. Once a stage completes the forward pass for

a micro-batch, the activation memory is communicated to the next stage in the pipeline
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(b) An illustration of how DeepSpeed will train a batch with
eight micro-batches using hybrid two-way data parallelism
(a) 3D pipeline in DeepSpeed and two-stage pipeline parallelism.
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Critical Techniques — Optimizer Design for Saving Memory

1-bit LAMB in DeepSpeed

Comparing with Adam optimizer, LAMB owns higher
computing efficiency under the large batch size but non-
frequent communication across workers. 1-bit Adam can
reduce the communication cost but cannot be directly
applied on LAMB.

They proposed a two stage algorithm (warmup &

compression stage) shown as below:

LAMB optimizer can be viewed as Adam with adaptive
layerwise learning rates, is an example of large batch

optimization.
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Algorithm 1 1-bit LAMB

I:

21:

22;
23:
24:

: Running the original LAMB in (1)) for T’ steps, and at each step cmq = ﬁgcm, +(1—
. At the end of step T, for each layer store the variance lerm (defined as 'u, in(w U. while still keep

Initialize: :c,(}”, mf,” =0, vf,“ =0, (:,[,_1,).” = 0 for each layer. Learning rate +, initial error § = 0, number
of total iterations T, warm-up steps 7., three decaying factor 3,, F2, #3 for LAMB’s momentum, variance,

and scaling coefficient. r B = 1, Pynins Trmazs Tthreshota for 1-bit LAMB
Ba)ct (1)

updating 'nt in the future steps. Also stop updalmg e J

cfort="T,,..., T do

(On i-th node)

Randomly sample &‘, and compute local stochastic gradient gt VE(m\E"), gﬁ"’), and update the
local momentum 'ms ©) according to m( 0= Slm! i) + (1 - ;31)9,, .
Compress the fused momentum mf” into mgﬂ =Cu [mgl) + 55?1] , and update the compression
error by 6,“) = mE” + 5&1}1 - Tﬁf”.
Send the rhg'-} to the server.
(On server)
Take the average over all riv}") it receives and compress it into ﬁ, [ > ml” +8,_ 1|, and
update the compression error accordingly by §: = £ 37, ! + 8y — T
Send 2, to all the workers.
(On j-th node)
Set myy = ;.
for the [-th layer do
Reconstruct global gradient gi” (mi” — ﬁlmr_’l)/(l — ).
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(1) s (1)
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(0]
Update model of the {-th layer :c&” = msl_]l - ’yc,“) ﬂ‘,_—
Ve
end for
end for
Output: .
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1-bit LAMB in DeepSpeed

Comparing with Adam optimizer, LAMB owns higher
computing efficiency under the large batch size but non-
frequent communication across workers. 1-bit Adam can
reduce the communication cost but cannot be directly
applied on LAMB.

They proposed a two-stage algorithm (warmup &
compression stage) shown as below:

LAMB optimizer can be viewed as Adam with adaptive

layerwise learning rates, is an example of large batch
optimization.
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Compressing Communication with 1-bit Adam
N
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Mixture-of-Expert Routing, MoE

Shazeer et al. proposed a natural language Mixture-of-Experts (MoE) layer which takes as an input a token
representation x and then routes this to the best determined top- k experts, selected from a set {E; (x)}’l-v of N

experts.

MoE in DeepSpeed
Referring to Switch Transformer, depending on the gating outputs, not every expert has to be evaluated. When the

number of experts is too large, we can consider using a two-level hierarchical MoE. For the trade-off between the

performance and the capacity

tokens per batch
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Take the sequence length as the difficulty metrics

They start from shorter sequence training data, then gradually increase the sequence length) for two reasons.
(1) Sequence length as the curriculum difficulty metric has been proven to be effective in NLP;
(2) It can reduce the time complexity

But supporting the curriculum requires reordering the whole datasets causing the additional cost.
They truncate the raw text into sequences with the same length to form a mini-batch with a pacing function as
below

Pacing function: step-wise linear

Given a starting sequence length seqlen;, an ending sequence length seqlen, (baseline full sequence length),
and a curriculum duration T (number of steps), the sequence length used for the training batch at step t is

seqlen; = seqlen, + (seqlen, — seqlen,;) X min(%, 1)
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Take the sequence length as the difficulty metrics
But supporting the curriculum requires reordering the whole datasets causing the additional cost.

They truncate the raw text into sequences with the same length to form a mini-batch with a pacing function as below

Pacing function: step-wise linear

Given a starting sequence length seqlen;, an ending sequence length seqlen, (baseline full sequence length),
and a curriculum duration T (number of steps), the sequence length used for the training batch at step t is

seqlen; = seqlen; + (seqlen, — seqlen,) X min(%, 1)
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Brainstorm Discussion

What techniques we can borrow?

MoE. Curriculum Learning

How DeepSpeed help us to train a model?

Pre-trained Model with Large scale

When the pre-trained model fails?
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